

SiteMind Open

Domain research tool targeting media planners and reseaerchers, specifically built for countering ad fraud and reducing its impact on media investment. Returns a result with up to 40 signals for any site typically in 1-3 seconds.

FEATURE HIGHLIGHTS

	intuitive ‘buy score’ system for website rating

	search any domain

	returns result usually in 1 to 2 seconds

	up to 150 data points per site from 5 different sources

	easy to use API with ready end-points for all common languages

OVERVIEW OF FUNCTION

SiteMind allows two different kinds of searches to be performed by the user:

	type-1: where a single domain name is the input

	type-2: where a comma separated list of domain names is the input

In both cases the system performs a series of operations resulting in up to 40 signals, which are then stored in a .csv file. Depending on the type of search, the result will then be returned either as a simple user interface, or a table with results for multiple sites.

SITEMIND SCORING SYSTEM

The SiteMind scoring system takes widely accepted “red flags” from signals available from various data sources (see the sections below) and creates a single easy to understand score out of those flags.

The formula to calculate the score ranging from 0 to 100 is as follows:

100 - ((CHECKS FAILED / CHECKS TOTAL) * 100) = SiteMind SCORE

The score consist of 10 “flags”.

	VARIABLE NAME

	FAILS WHEN

	SCORE_CHECKS

	Not enough signals to perform 4 checks

	SCORE_UPSTREAM

	More than 90% of the traffic coming from TOP5 Upstream

	SCORE_UPSTREAMCHECK

	No common sites in TOP5 Upstream

	SCORE_TRUST

	Web of Trust Trust score is less than 50

	SCORE_TOPKEYWORDS

	More than 90% of the traffic coming from TOP5 Keywords

	SCORE_SEARCH

	Less than 1% of traffic is coming from search

	SCORE_PAGEVIEWS

	More than 8 pageviews per visit on average

	SCORE_YEARS

	Domain was originally registered less than 2 years ago

	SCORE_PRIVACY

	Domain uses whois privacy guard

	SCORE_BOUNCERATE

	Site bouncerate is less than 10% on average

DATA TAXONOMY

The below table shows all the signals that are currently available through SiteMind. All variables are available through the scan function in the resulting .csv file, or in the user interface resulting from a single site search.

NOTE: Different naming may be used in the user interfaces, and this is easily changed.

VARIABLE NAME is the name of the variable as it is found in the output file resulting from a search of scan.

SOURCE is the reference to where the data is originating from. In the case the filed says ‘sitemind’ it means that the signal is inferred from other data.

COLUMN NUMBER is only for development purpose and is used in the UI codes to to present a certain signal in a given place in the user interface.

	VARIABLE NAME

	SOURCE

	COLUMN
NUMBER

	SCORE_CHECKS

	sitemind

	2

	SCORE_UPSTREAM

	sitemind

	3

	SCORE_UPSTREAMCHECK

	sitemind

	4

	SCORE_TRUST

	sitemind

	5

	SCORE_TOPKEYWORDS

	sitemind

	6

	SCORE_SEARCH

	sitemind

	7

	SCORE_PAGEVIEWS

	sitemind

	8

	SCORE_YEARS

	sitemind

	9

	SCORE_PRIVACY

	sitemind

	10

	SCORE_BOUNCERATE

	sitemind

	11

	ADMIN_CITY

	whois

	12

	ADMIN_COUNTRY

	whois

	13

	ALEXA_BOUNCERATE

	alexa

	14

	ALEXA_INLINKS

	alexa

	15

	ALEXA_LOADSPEED

	alexa

	16

	ALEXA_PAGEVIEWS

	alexa

	17

	ALEXA_RANK

	alexa

	18

	ALEXA_SEARCHVISITS

	alexa

	19

	ALEXA_TIMEONSITE

	alexa

	20

	ALEXA_TOPCOUNTRIES

	alexa

	21

	ALEXA_TOPKEYWORDS

	alexa

	22

	ALEXA_UPSTREAM1

	alexa

	23

	ALEXA_UPSTREAM1N

	alexa

	24

	ALEXA_UPSTREAM2

	alexa

	25

	ALEXA_UPSTREAM2N

	alexa

	26

	ALEXA_UPSTREAM3

	alexa

	27

	ALEXA_UPSTREAM3N

	alexa

	28

	ALEXA_UPSTREAM4

	alexa

	29

	ALEXA_UPSTREAM4N

	alexa

	30

	ALEXA_UPSTREAM5

	alexa

	31

	ALEXA_UPSTREAM5N

	alexa

	32

	CHECKS_TOTAL

	alexa

	33

	CHECK_FALSE

	alexa

	34

	CHECK_TRUE

	alexa

	35

	TOP5_UPSTREAM

	alexa

	36

	WHOIS_PRIVACY

	whois

	37

	WHOIS_YEARS

	whois

	38

	WOT_CHILDSAFETY

	weboftrust

	39

	WOT_TRUST

	weboftrust

	40

DATA SOURCES

While adding virtually any additional data soruce, SiteMind relies on three different data source by default.

	Alexa

	Web of Trust

	WHOIS

ALEXA*

It is recommended to use the paid Alexa API. SiteMind uses web scraping method by default for demo and prototyping purpose.

Web of Trust

Web of Trust data is fetched using the WOT API, which provides a rich data taxonomy and is free to use to a substantial level of daily usage.

More information on the WOT API can be found here: https://www.mywot.com/wiki/API

You can apply for your own API key here: https://www.mywot.com/en/reputation-api

WHOIS

SiteMind provides a fully automated method for the “gold standard” way of fetching WHOIS records.

	Gets to main record from the tld level registar including the registar that holds the sub-record

	Gets the sub-record from the holding registar

PROCESS FLOW

	
	User provides input through the search field in the UI

	
	> form_process.php

	> run.sh

	
	run.sh checks if there query is empty, single domain, or multiple comma separated domains

	
	> sitemind.sh (“controller”)

	
	Regardless if it’s single or multi search the program cycle proceeds

	
	
	> bin/api-fetch.sh

	
	> bin/alexa_data.sh

	> bin/whois_data.sh

	
	> bin/wot_data.sh

	
	> wo_data.py

	
	Using the data in various .temp and .bash files a usable data format is created

	
	> bin/api-build.sh

	
	The data is provided in a comma separated format for multi searches

	
	> data-export.sh

	
	The data is further formatted for the UI building process

	
	> data-cms.sh

	
	The UIs are built each in a separate script

	
	> cms/cms-scorecard.sh

	> cms/cms-traffic.sh

	> cms/cms-overview.sh

	> cms/cms-upstream.sh

	
	A finish cleanup is performed

	
	> finish-cleanup.sh

DIRECTORY STRUCTURE

NOTE: In a multi-user system, each user has a self-contained replica of the program folder in the program root.

	FOLDER

	

	/

	Sitemind program root

	/bin

	Where non UI scripts reside

	/cms

	Where the UI scripts reside

	/cms/graphics

	Images for the UI

	/cms/js

	Javascripts for the UI

	/cms/style

	Style sheets for the UI

	/cms/templates

	Header and Footer for UI

GETTING STARTED

The following installation instructions have been tested on Ubuntu 16.04 clean distro.

Install dependencies:

sudo apt-get update
sudo apt-get install -y apache2
sudo apt-get install -y php5
sudo apt-get install -y unzip
sudo apt-get install -y parallel
sudo apt-get install -y num-utils
sudo apt-get install -y git

Getting the source files and setting it up:

wget https://github.com/SiteMindOpen/SiteMind/archive/master.zip
unzip master.zip
sudo rsync -av ~/SiteMind-master/ /var/www/html

chown -R www-data:www-data /var/www/html && chmod -R g+rw /var/www/html

After the initial setup, as long as you create new users with SiteMind command line command ‘sm-user-new’, permissions will be handled automatically and is not something you need to think about.

Creating an admin user:

PASSWORD=$(openssl rand -base64 20); htpasswd ./etc/apache2/.htpasswd -cbB admin "$PASSWORD"; echo -e "Your password is $PASSWORD";

Restart apache

Ubuntu 14.04:

service apache2 restart

Ubuntu 16.04:

systemctl apache restart

HTTPS WITH LETSENCRYPT

Letencrypt makes it incredibly easy (and fast) to setup functional https for your site.

Note that for the below to work, you need to have a valid domain name that is pointed to the server you’re initiating the below command from:

sudo git clone https://github.com/letsencrypt/letsencrypt /opt/letsencrypt
cd /opt/letsencrypt
./letsencrypt-auto --apache -d yoursite.com

NOTE: as part of the setup process, there will be a prompt asking if you want to redirect all requests to https. I think this should be on for most cases.

DEBUGGING

For DATA related debugging change production_version to debug_function from line 24 in bin/api-fetch.sh. This will help you to identify issues with one part of the data fetching cycle getting stuck. This should happen very rarely as it has been debugged a lot.

For UI related download the program folder to a local machine and run a PHP server locally. This way you will very easily see any error messages that are coming up when the UI is loaded.

If you’ve setup properly, then you can easily see related error logs on the server-side using:

./sm-monitor

RUNNING LOCALLY

You have to run a PHP server from the Sitemind folder to be able to make queries from the UI:

php -s http://127.0.0.1:8000

If you’re a mac user, go the Sitemind folder and exexcute the below command:

sudo php -S 127.0.0.1:8000 && /Applications/Google\ Chrome.app/Contents/MacOS/Google\ Chrome --app="http://127.0.0.1:8000/dev/index.html" --window-size="1000x800"

Alternatively you can run from the command line (in the Sitemind folder):

./run.sh domain.com

CODING CONVENTIONS

The code is almost 100% bash and certain principles have been followed where possible:

	code starts one tab intend deep

	each script (.sh file) represents a step in the process flow

	no more than 50 lines of code per script

	no more than 50 characters long lines of code

	functions first, program second, cleanup last

	mininal comments - instead self-explaining code

It should be very easy for anyone with beginner+ level in bash to modify the code that is already there, to add new code to improve current functionality, or add completely new functionality.

FUTURE DEVELOPMENT

	Create setup process where server is configured including SSL and a conf file is created at ~/.sitemindrc

	Make upstream sites clickable (yields a new search)

	Check for native advertising being a major source of traffic

	Add a 30 day cache to avoid redundant searches

	Make one-page report for export available with all the signals

	time-limited account creation

ADMIN FEATURES

In the environment of the host machine, include the following alias commands:

alias sm-sync='/var/www/html/admin/bin/sync.sh'
alias sm-user-list='cat /etc/apache2/.htpasswd | cut -d: -f1'
alias sm-monitor='/var/www/html/admin/bin/monitor.sh'
alias sm-user-new='/var/www/html/admin/bin/user-new.sh'
alias sm-user-rm='/var/www/html/admin/bin/user-sh.sh'
alias sm-commit='/var/www/html/admin/bin/commit.sh'
alias sm-commit-version='cd ~/git/sitemind && /var/www/html/admin/bin/commit-version.sh'
alias sm-commit-log='git log --oneline --decorate --color'
alias sm-conf-nossl='vim /etc/apache2/sites-available/000-default.conf'
alias sm-conf-ssl='vim /etc/apache2/sites-available/000-default-le-ssl.conf'
alias sm-find-file='/var/www/html/admin/bin/sm-find-file.sh'

Usually you can find the file from ~/ under the name .bashrc. Add the above lines in to the file and next time you login to the host, the following commands will be available anywhere in your system:

In a Linux system you can do this typically by:

vim .bashrc

sm-sync

Syncs all the user accounts with /dev.

sm-user-list

Prints out a list of user accounts.

sm-monitor

Creates a report out of access and error logs from the on going day’s logs.

sm-user-new

Creates a new user in to the system and prints out a randomly generated password for the user.

EXAMPLE USAGE (where we want to create a user ‘john’:

sm-newuser john

sm-user-rm

Removes a user and all associated files from the system (Use with caution!).

SERVER CONFIGURATION

sm-conf-nossl

Opens up the no ssl (port 80) apache configuration file in vim editor.

sm-conf-ssl

Opens up the ssl (port 443) apache configuration file in vim editor.

Index

 nav.xhtml

 Table of Contents

 		
 SiteMind Open

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

